PHY 101: Vector Integration
What is Integration? Integration can be thought of as a continuous analogue of sum (\(\sum_{ }^{ }\)). We integrate or simply add infinitesimal small quantities together to form a continuous chain. Integration can be of 3 kinds rather I would call it 3 ways of integration. Linear, Area and Volume way. To show what each of them looks like here is a visual representation: $$\begin{aligned}& Linear \hspace{1mm}integration:\int_{ }^{ }f(x)dx\\ \\ &Area\hspace{1mm}or\hspace{1mm} surface\hspace{1mm} integration: \iint_S f(x,y)dxdy \\ \\ & Volume \hspace{1mm} integration: \iiint_V f(x,y,z)dxdydz \end{aligned}$$ You might have already noticed that the number of integration symbols (\(\int_{ }^{ }\)) increases with the increase in the number of variables. Hence, most books adopt the notation of calling these single, double and triple integrations. We at physics are creatures of simplicity and thus have kept it easy to remember. Let us talk about each in some detail! Single or Linear...